
Version 1.3.5.01 Changes

Interval Timers

Interval timers now have three additional write only properties available. These are
Reset, ResetStart, and ResetStop. These are available in the Logic Flows simple tree
when an interval timer endpoint is selected in the logic flow. Since these are write
only properties they will not be shown when interval timer start points are selected
– only endpoints.

All three properties accept true/false values and setting any of them to true will
initiate the reset. They do not need to be set to false again afterwards as passing the
true value is just a trigger to initiate the reset. The value is not retained. These
properties can be thought of more as actions than traditional properties.

The description of each of these properties is as follows:

• Reset: If the timer is enabled, this property will disable and then re-enable
the timer to start the countdown over. If the timer is disabled, this will set
the elapsed property to false.

• ResetStart: Stops the timer (if it is running) and then starts the timer to reset
the countdown.

• ResetStop: Disables the timer and changes the elapsed state to false.

Logic Flow Changes

View Cut, Copy, and Paste
The views tab in Logic Flows now includes additional tools for cut, copy, and paste
of entire views.

These tools will only be enabled when a single view is selected. To copy a view,
select the view folder and deselect any other views and click the copy icon. Once a
view is on the clipboard, the paste icon will be enabled. Select a new parent view
folder, deselect all other folders, and click paste. The system will ask for a new
name for the new view to be pasted, and it will then paste the copied view using the
new name. You cannot select multiple views for copy and paste operations though if
you select a view with child views those child views are a part of the copy operation.

In the example above ZZZDan was copied to the clipboard. Then we selected the
LogicFlows view and pasted using the name ZZZZ. It is important to note that all
pasted logic flows will be in a disabled state. After selecting the ZZZ folder you will
notice the pasted flows are disabled.

It is assumed that after completing a copy and paste you will want to modify the
start and end points of the flow to reproduce behavior using different endpoints. It
is also important to note that view Copy and Paste operations are completed by the
Core PRO appliance rather than the browser and so do not require an apply.

Note: Under the hood the browser sets a write only CopyTo property on the copied view folder
object via a SapV2 set message. The value used in the set message is the path to which the view
should be copied. The PathfinderCore PRO logic flow engine then handles the data cloning.

Cut works the same way as copy except that after pasting, the original view is
deleted. It is important to note that the paste creates disabled flows whether the
operation started as a cut or a copy. Therefore, if you are cutting and pasting you
will still need to reenable the pasted flows.

Combiner Editing
Double clicking on a combiner no longer rotates through the combiner types.
Instead it will open a dialog for selecting the type of combiner and filling in any
parameters that the combiner requires.

Use the drop down to select the combiner type. Only combiners that accept the
number of inputs that are currently assigned to the combiner will be present in the
dropdown. For example, a single input will yield a dropdown list that includes Not,
PassThru, and Delay. Delay is new and described below. Whereas two inputs will
result in a dropdown list that includes And, Or, Nor, etc. The list will express options
that match the number of inputs to the combiner.

In some cases, selecting a combiner type will display additional configuration
options. Examples are presented below with the new Equality and Delay combiners.

Equality Combiner
The equality combiner takes multiple inputs and will result in an output value of
True or False depending on whether all input values match. To create an equality
combiner, add a combiner to the flow and make sure the combiner has at least two
inputs. Then double click on the combiner and select equality from the dropdown.

The equality combiner also has a case insensitive checkbox which defines whether
comparisons are done in a case sensitive or insensitive way. Click Done once
configured properly.

This combiner can be used in situations where the primary concern is whether the
property states are equivalent or not.

Delay Combiner
The delay combiner takes a single input and introduces delay directly into the logic
flow. It works like a passthru combiner in that it takes the input value and passes it
through to the output but only after a configured number of milliseconds. There are
also some additional parameters that can affect how this combiner functions. To
create a delay combiner, create a new combiner with a single input. Double click on
it and select the delay combiner type. Several configuration options will appear.

• Delay Time: Defines the number of milliseconds to delay.
• Reset delay if input changes: The delay countdown starts every time the

input changes its value. If this option is selected the countdown will be reset
whenever the input value changes. If you have a parameter that is fluttering
and you only want an action to happen if it settles down to a fixed value for
more than x milliseconds, this option should be checked. If you want to value
to happen x milliseconds after a change even if additional changes happen
during the countdown (delay time) then this option should be unchecked.

• Output Value: Defines whether the value that is passed through is the input
value at the start of the delay countdown or the end of the countdown. This
option accounts for the possibility that the input value could change again
during the delay countdown and allows you to define which value gets
passed through. The options are:

o Value at input when timer starts
o Value at input when timer ends

• Cancel Value: Allows you to define an input value that will cancel the timer
and not make any change to the combiner output (not pass any different
value through).

Delay combiners can be used in many situations where you need to introduce some
delay into a logic flow. Previously this required using an interval timer. Therefore,
there will be many situations where an interval timer is no longer necessary to
accomplish the task as the delay can be built directly into the flow. This also
reduces licensing requirements as the delay combiner does not require an
intermediary timer endpoint.

Interval timers are still useful in situations where a single delay needs to be stopped,
started, reset, or manipulated by different flows.

Delay/Equality Flow Example

This is an example that uses the new combiners available in 1.3.5.01. In this
example, the equality combiner outputs true or false depending on whether two
silence alarms are in the same state. This can be useful if two audio channels should
have the same audio. Silence is expected in certain situations but we are trying to
make sure that if audio is present on one, it is present on both and if it is silent on
one then it is silent on both. True or False is translated into a message of
AudioMatches or AudioDiffers. A delay is introduced to expunge short variations of
alarm states and only pass on definitive states. This is one example of how these
new combiners might be used.

Version 1.3.6.02 Changes

Email Host
When configuring the email host settings, using a blank user name and password
will now cause PathfinderCore PRO to skip including any credentialing in the email
send. This should allow PathfinderCore PRO to send emails to email servers that are
protected by source IP address rather than user credentials.

Please note that after applying a blank password, the password field will likely show
a series of stars. This does not mean the blank password has not been applied. In
addition to masking the characters of a password, password fields also mask the
length of the password with a constant number of stars. So even a blank password
will display with some stars after it has been applied to the system.

Delay Combiner
Two additional properties have been added to Delay combiners which allow the
delay combiner to operate in a momentary fashion.

In many cases you may want the delay to pass a value through after the delay but
then reset the output for the next change. For example, if we want a flow that
requires a user to hold a button down for a length of time before making a change,
the flow might look something like:

Our goal with this flow is the following:

• If the button is pressed, start a 5 second timer
• If the button is released cancel the timer
• If the button is held for 5 seconds make the route change

The Delay combiner has an input value and an output value. Changes only get
passed to the output translator when the combiner’s output value changes. And the
delay is only analyzed for countdown when the combiner’s input value changes. For
this example we would set the delay combiner parameters like:

• If the user presses the button the input value gets set to True based on the
inbound translation:

• The timer starts counting.
• If the user releases the button before the timer elapses, the input value of the

combiner gets set to False. Since this matches the cancel value the delay
timer stops counting.

• If the user does not release the button for 5 seconds, then the true value gets
passed to the combiner output which is being monitored by the output
translator:

• A route change is made.
• Since the “Clear Value” and “Clear Output after countdown completes”

options are set, the output value of the combiner is then set to False again so
it is ready for the next button press.

• When the User releases the button, the combiner input is set to False but
since that is the Cancel field no change to the combiner output is made.

Without the clear value and clear output after countdown options, the output of the
combiner would remain true and so the next press would not change the output and
therefore would not trigger another route. If we cleared the Cancel value and did
not use the new clear options, then releasing the button would pass false to the
output but 5 seconds after the button was released.

It is important to note that a cancel value if set will cancel the countdown but the
cancel value does not get passed through.

These parameters will allow you to produce differing effects depending on the
required goal.

Version 1.3.7.03 Changes

Email Messages

Beginning with this version you can now use <%DateTime%> in the subject or body
of an email message. This will get replaced when the email is sent with the current
date and time. For example:

In this case when the email message gets sent, the subject will look like:

Hello YYY - 2017-12-14T13:51:28.033-05:00

And the body will look like:

Howdy YYY at 2017-12-14T13:51:28.033-05:00

Use this feature to insert date and time values into the email message content.

Version 1.3.10.09 Changes

Swap Values

Beginning with this version properties which are binary (have two possible values)
will now have a third option called swap. For example, a GPO pin state will now
accept low, high, and swap instead of just low and high. This makes certain kinds of
latching functionality much simpler to create. Let’s look at some examples to see
how this new option simplifies certain kinds of tasks.

Many novice Pathfinder Core PRO users may try to create a flow that looks like this:
Warning: Do not use this flow. This is an exam ple of what not to do.

The goal of this flow is that each time a GPI goes low, the user wants to toggle the on
state of the fader back and forth between on and off. The user has tried to create a
flow where if the GPI is low and the button is on then turn it off and if the GPI is low
and the button is off then turn it on. The problem with this flow is that it creates and
endless loop for as long as the GPI is low. Setting the GPI to low changes the state of
the console channel which in turn causes the second half of the flow to change it
again and so on until the GPI is returned to high.

With Pathfinder Core PRO this has historically been solved by using a latching
memory slot.

In this case the Trigger property causes the latching memory slot to swap between
true and false each time the GPI goes low and then that true or false is translated to
the on/off state of the fader. The problem with this flow is that the fader can also be
turned on and off with the actual console button which causes the latching memory

slot to get out of sync. This could be solved with a third flow if we allowed you to
force the state of the memory slot each time the fader state changed. But this
requires numerous flows and the creation of a memory slot for every instance of
this functionality. It feels complicated to do what on the surface feels like it should
be simple.

With the new swap value this becomes much simpler:

That is all you need to solve the problem. Each time the GPI goes low a value of
swap is sent to the fader. The device manager picks up this request, checks to see
whether the fader is currently on or off and sends the opposite state as a command
to the equipment. The problem with the earlier flows is that the flow logic had to
encapsulate all viable options of the existing state and specifically request what
state to move to accordingly. The swap property removes that complexity from the
flow logic and allows the system to handle it for you.

It is important to note that the swap value is an action and so will only appear in the
translation options for an endpoint. It has no meaning for a start point because it is
not a real actual state and so it will not appear in the options on a start point. Below
you will find a list of all the properties to which this value option has been added. In
depth knowledge of this list is not necessary as the logic flow user interface will
present the swap option in the translation when it is available. For example:

Note: Axia LCD button and user button indicators represent a special case in that they have more
than two options including on, off, flash, wink, and a variety of other flashing states. However, we
chose to add a swap value to this property because on and off are the states that are most often
used. If a button indicator if off and the swap value is sent, it will turn the indicator on. If it is in
any other state when the swap value is sent, the indicator will be turned off.

Full List of properties with the new swap value
• GPIOPinstate – low, high, swap
• VMixer IN State – ON, OFF, swap
• LCD Button IND – (See note above)
• Fusion User Button IND – (See note above)
• Console Fader

o On_State - ON, OFF, swap
o Mute_State – MUTED, NORMAL, swap
o ASG_PGM1 - ON, OFF, swap
o ASG_PGM2 - ON, OFF, swap
o ASG_PGM3 - ON, OFF, swap
o ASG_PGM4 - ON, OFF, swap
o ASG_PREV - ON, OFF, swap
o Talkback - ON, OFF, swap
o tt_cr - ON, OFF, swap
o tt_prev - ON, OFF, swap
o tt_st – ON, OFF, swap

• Console Monitor Section
o cr_mute – MUTED, NORMAL, swap
o cr_dim – DIMMED, NORMAL, swap
o st_mute – MUTED, NORMAL, swap
o st_dim – DIMMED, NORMAL, swap

• XNode MixInput InputActive – False, True, swap
• Axia Device Inp PhantomPower – 0(Off), 1(On), swap
• Legacy Panels

o Flash – ON, OFF, swap
o MeterFaderBuss

▪ VisibleFader – False, True, swap
▪ VisibleOnOff – False, True, swap
▪ Enabled – False, True, swap
▪ IsOn – False, True, swap

o Button
▪ Enabled – False, True, swap
▪ State – On, Off, swap
▪ Latching – On, Off swap
▪ IsDown – False, True, swap

o MeterFader
▪ False, True, swap

• Timers
o Enabled – False, True, swap
o Elapsed – False, True, swap
o AutoReset – False, True, swap

Version 1.3.11.10/11 Changes

Logic Flows
Prior to this version, logic flow steps each required a change to take place to
advance to the next step. For example:

In this example Memory Slot test2 would be set to Goodbye when the GPI pin is
high. When it goes low the value from memory slot test will be passed through the
relay to test2. Then when we release the GPI to high again, test2 will return to
Goodbye. The problem comes the second time the GPI goes low. At that point the
state between the relay and the translator is already set to hello even though the
endpoint is at good bye. Therefore, no change would happen on the endpoint
because no change happens in the second translation. This is an unexpected
outcome. Starting in this version the slot value will be passed through to the
endpoint regardless of whether it is different from the last sent state. And this
applies to all translators and combiners.

It is important to note that start points (which are inherently not on the inside of a
flow) are generally still based on changes. For example, this flow will still only ever
get triggered and/or analyzed when a message comes in to the logic flow system
that the GPI pin has changed or that the memory slot test has changed. There are
some exceptions to this rule. These include:

• System Startup
• Flow creation/edit change
• Enable/Disable

In each of these situations a get message is sent by logic flows to establish the initial
state of the start point. And the return from that get message will cause the flow to
be acted upon. If you wish to avoid that action and wait for the next change then use
the “Skip startup state request and wait for next change option.”

Please note that this change could be a breaking change to some flows. We have
spent time analyzing numerous customer flows and believe the impact will be
minimal or non-existent but it is a behavioral change and therefore could cause a
flow to work differently than it has in the past. If you find a flow that is not working
correctly after this update please revert to an earlier version and then report the
broken flow to us. We will then analyze to determine if we need to add additional
options to the software to cover the case or if there is a better way to design the flow
under the revised structure.

Console Channel Subscription
With newer versions of console software, a command has been added that allows us
to subscribe to the movements of the console faders. Prior to these software
updates we had to poll at regular intervals to determine the current level of the
fader. To decrease load on the system when often a fader was going to be in a static
position for extended periods of time, our poll rate was set at a reasonably low rate.
This caused things like meter faders in user panels to jump every few seconds when
a physical fader was moved instead of smoothly following the move. The addition of
this subscription mechanism in the console code has allowed us to subscribe to
those changes and track the physical moves much more closely. This new
subscription command has been utilized in this version of PathfinderCore PRO. We
left polling in place as well to continue to support console software revisions prior
to the ones that supports this new subscription command. This new feature should
exist in Element/Fusion firmware version 3.2 and later and Qor 2.3.0.59 and later.

Previous Route Source
While there has not been an actual change to the functionality of the previous route
source, user cases have arisen that require clearer recommendations. For example,
this is a pretty common flow we might see for EAS.

First if you are going to use a flow like this, it is critically important that you also
turn on the “Skip startup state request and wait for next change” option.

Without this option a restart of the system will request the current GPI state which
is high and will therefore toggle the previous route. In many cases this will route
nothing to the air chain because no previous state exists yet.

However, even with that option enabled this flow may produce unforeseen results.
For example, what happens if the GPI goes low and someone manually changes the
route before it goes high again? At that point EAS is now the previous source when
it does go high. This can be solved by using a slightly more complex flow with
previous.

In this example, a route to previous will only happen if the GPI is high and we are
currently on the EAS source. This will function in a much more reliable manner.

While these examples have been EAS related the same rules apply to other uses of
previous. More importantly, if you can avoid the use of previous and design the
flows to be more specific the outcome will also be more reliably specific.

Watch the PathfinderPC.com site for a future article that delves into some of these
other options.

Version 1.3.12.13 Changes

Object Translators

Object translators differ from property translators in that an Object translator can
affect multiple properties of a given object whereas a property translator only
affects a single property. As described in the full Pathfinder Core PRO
documentation, object translators are often used for mirroring states of full vmix
channels or vmixers with a single translation. Object translators are created by
selecting an object end point from the property list rather than a property. Please
review the Pathfinder Core PRO manual for more details about object translators.

However, object translators prior to version 1.3.12.13 had a restriction based on
their inheritance from property translators that the input side of the conversion list
had to be unique. So for example:

When you edit the translation list for this translation which has a GPIO pin state as
an input and a button object for an output, you can select multiple properties on the
right hand side of the translation. But you cannot repeat the same value on the left
hand side. So the example below would not work:

This translation list would get stripped down after clicking Done to only the first of
the output property state changes for low and the first of the output property state

changes for high on the output side. Starting with version 1.3.12.13, that is no
longer the case and the example above will work. This allows multiple properties to
be set at once in a single translation block to a given object.

So for example the following flow:

Can be reduced to this flow instead:

Where the translation looks like:

This can greatly reduce both complexity and license utilization when trying to set
multiple properties on an object such as a button or fader at the same time.

Version 1.3.13.20 Changes

Important Notes and Known Issues

This build includes a preview version of the new HTML panels and panel designer.
It also includes a graphical refresh of Logic Flows. There are number of known
issues with these new features that need to be mentioned.

• The new panels are not subject to cluster synchronization in this build.
Therefore, user panels built on one node of the cluster using the new html
panels will not appear on the other node without a manual sync. Clustering
support will be coming soon.

• Because of the number of changes in this build, cached files in the browser
may cause incorrect operation.

o Clearing your browser cache will fix this problem.
o Alternatively, if something is not working correctly or something is

missing, or a graphic does not look correct, try holding the Ctrl and

Shift keys and clicking the refresh icon in Chrome: . This
combination forces a hard refresh where chrome re-downloads the
files rather than relying on the cache. This may have to be done on
different pages of the application if that page is not working correctly.
Once the new code is loaded, this should generally not be necessary.
We are continuing to work on better ways to manage how and when
browser caching occurs.

• The new panels have been designed using Chrome and are not fully tested
with other browsers at this point in time.

• If you save a user panel and the saved changes are not displayed, try
forcefully refreshing the browser as described above.

Web Page Connection State
Pathfinder Core PRO does most of its dynamic data and configuration via a web
socket. When the web page opens, it downloads the web pages and javascript and
then opens a web socket to port 8001 which is extended to the API socket for actual
real time communications and changes. In previous versions it was unclear as to
whether this websocket connection was successful. This meant that if there was a
loss of connection between the web browser and PathfinderCore PRO there was no
visual indication and the user would think that that the configuration had
disappeared or was not functioning. Another example is that during a system
restart the web socket may not be available for a period of time as the system boots
and loads its configuration. And sometimes after a restart the user might need to
refresh the web page to get it to reconnect. This version now adds an icon on each

web page that uses the web socket. This icon shows the status of the web socket
connection:

If this icon is red that means the web socket connection has been disconnected or is
not established. Blue is the color that shows that the socket is properly connected.
It is perfectly normal for this icon to briefly flash red and then settle on blue when
the page is first loaded. Additionally this version will now generate an error
message if configuration changes are saved when the socket is in a disconnected
state.

Logic Flows

While logic flows function in the same manner in this version as the previous beta,
the graphics have been updated. Both the tollbar icons and flow shapes have been
improved. The following before and after pictures show the differences:

Before:

After:

User Panels

User panels may now be created from the web interface. It is important to note that
the new user panels are not compatible with the old legacy panel designer and/or
PathfinderClient/Mini. The new user panels are completely Html5 and therefore
may be both designed and used with just a web browser. In this version Chrome is
the recommended browser and testing/implementation has not been completed for
other browsers yet.

Html user panels may be used and edited from the User Panels menu item.

This list will show both the new Html5 panels and the original legacy panels created
with the legacy panel designer. Html5 panels will have their name displayed as a
link. Clicking that link will display the panel within the context of the

PathfinderCore PRO web pages. Clicking the icon will open the panel in its own
window without most of the browser menu systems. Finally, the html5 panels will
have edit and clone links. The edit link will open the panel in the html panel
designer and the clone link will make a duplicate of the panel as it exists under a

new panel name. The icon will delete an existing panel. The icon will open
the html panel designer for creating a new panel.

Creating a new panel
To create and use the new panels, select the User Panels menu item.

Click the icon to create a new panel.

This will open a new panel in the panel designer. We recommend clicking the Save
button next in order to give your panel a name and instantiate it before you begin
adding components. After saving and giving the panel a name, the name of the panel
should appear in the upper corner:

Next set the size of the panel. Click in the main panel so that the panel gets
highlighted.

On the right side, the property window will fill with sections of properties that may
be manipulated. Expand the position/size section.

Change the size of the panel by clicking in the size field and selecting from a pre-
determined size or by altering the height and width properties. The size of the
panel area should change accordingly.

Adding Components
To add components to your panel, expand the Html and/or custom sections in the
left toolbar.

Hovering over any tool will show a hover balloon with the name of the component.
To explain the tools for the components and how to use them this document will
start with a simple html button. Later we will discuss the other components that
may be used. Click and drag the top left html button (hover balloon says Button)
from the tool bar into the panel. When you let go of the button at the end of the drag
operation a new button should appear on the panel and it should be highlighted
with the red box indicating it is the selected component:

Dragging the edges of the button will resize it whereas dragging from the center of
the button will move it. You can also use the arrow keys on your keyboard to nudge
the component by small amounts in any direction. It will move 1 pixel at a time
unless the grid is enabled in which case it will move by the grid amount. We will
discuss the grid more shortly. The selection handle displays just inside the actual
edges of the object by design so when aligning objects, you can still see the actual
edge of the object.

Note: Some components may by default resize both height and width when one or the other is
dragged. These are generally more complex components such as the console fader component.
This is because non-scaled resizing causes the component to look skewed and stretched so both
sizes are changed to maintain aspect. Holding the shift key while resizing overrides this behavior
and allows you to skew the component if desired.

Adjusting Properties
It is also important to note that the property list on the right will have updated to
present the properties that may be changed for the currently selected component
(our new button). Clicking in the field and changing one of the properties will make
the corresponding changes to the button. For example, click in the caption field and
add a caption:

Expand the style section and try adjusting the border-radius or the font-size.

As you can see there is a high degree of power to achieve exactly the desired design
using the properties in the property grid.

Clicking cancel will return the panel to its previous save state and clicking save will
save the changes.

Note: In this version there is no undo or redo so frequent saves as you are working
are recommended.

Tool Bar

Cut, Copy, Paste, Delete
The top tool bar has several tools to help with the layout of components:

These are the standard Cut, Copy, Paste, and Delete tools. They can be used with
any components currently selected on the panel. You can select multiple
components by holding the shift key while you click

Alignment Tools

These tools are alignment tools and will only be available for use if you have
multiple components selected in the panel. For example, drag three or four buttons
into the panel. Then while holding the Shift or Control key click on each component
until the red select box is around each of them:

Once more than one component are selected, the align tools will become enabled.
These tools are:

• Align Left

• Align Top

• Align Bottom

• Align Right

• Spread Horizontally

• Spread Vertically

In each case the system will look for the most extreme edge and align to that. For
example, with the 4 buttons selected in the example above, clicking the align top will
find the selected button that is closest to the top of the panel and align all of the
buttons so that their tops match that button.

Clicking the Spread Horizontally tool will make them spread evenly between the left
and right button

Magnet

The magnet tool is enabled by default but may be disabled by clicking on the tool.
This tool helps to align and resize items of like kind edge to edge. For example,
create a new button and resize it. And then add a second button and leave it at the
default size.

If you then drag the small button so that its edge meets the large button it will
immediately snap to the size of the large button and align itself to the large button’s
edge.

This is extremely useful when trying to build a panel with many same sized
components lined up edge to edge. However, it can also be disconcerting when you
want the components to be different sizes and/or not to line up. So always be aware
of whether the magnet tool is on or off when trying to align components.

Grid

The grid tool if enabled will align component’s location and size according to a grid
of a specified pixel density. For example, if you enabled the grid with a pixel density
of 10 pixels, you will notice that dragging components will jump by 10 pixels. This is
useful when trying to evenly align components.

Page

The page tool allows you to create additional pages for a panel. Buttons may be
created to switch between the pages. The method to make a panel switch pages will
be described in more detail later. However, to design a new page, click on the down
arrow and select the [newpage] option.

After clicking the new page option click save to give the new page a name. Then you
can design a new page as if it was any other panel. Each panel has an index page
which is the default page that will be loaded when the panel is first displayed. You
can select any page to edit by clicking the page in the drop down list. You can clone
your work to a new page by selecting the page to be cloned and then selecting the
clone page drop down item. The system will ask you for a new page name for the
cloned page.

You can delete a page by selecting the page background and clicking the delete icon.
The system will then ask you if you want to delete the page. You cannot delete the
default index page.

Cancel/Save
The cancel and save buttons may be used to save your work or cancel pending
changes and reload from the last save point. Since this version does not have an
undo/redo button and this functionality is still very much in beta testing, frequent
saves of your work are recommended.

Property Grid
You were already introduced to the property grid in the section on adjusting
properties above. This section will go into some additional detail. Drag a button
onto your panel and select it so that the property grid displays the available
properties of the button.

Different components may have different property sections and sub sections as well
as properties that are specific to that component but this is an example of the
property sections you will see. Expanding the sections will display addition sections
and properties.

Because the property list is still changing as we progress through the beta stages of
Html5 panels we will not list the meaning of every property in this document. We
will mention ones that have specific meaning unique to that object. However, many
of these properties are standard css style properties used by any web page designer.
One of the best references we have found for css properties is w3schools.com:
https://www.w3schools.com/cssref/. This link will provide information about all
of the css properties exposed in the property grid along with their meaning and
usage information.

There are also some properties that you will not find in the css reference above
because they are custom to our usage of that component. For example, in the case of
the button component, caption, HwMap, and indicator are all properties that are not
standard css properties. We will describe their usage more in the examples below.

https://www.w3schools.com/cssref/

Bind Button
Each property in the property grid has a button between the property name and the
property value at the end of the property name side of the grid. This is called a bind
button.

The bind button defines the properties that should be exposed to PathfinderCore
PRO for use in logic flows. In some cases, there may be hundreds of properties for a
given component, but there are only a few that you will want to dynamically change
while the panel is running. For example, once you position a button on a panel and
size it to the size you desire, it is unlikely that you will want that position to change
while your end user is using the panel. Therefore, there is really no need for the left
and top properties to be cluttering up the logic flow tree. Clicking the bind button
for a given property will turn the button blue.

Saving the panel will then identify to PathfinderCore PRO that this is a property that
we expect to dynamically manipulate with logic flows and so should be tracked by
PathfinderCore PRO and made available to Logic Flows.

Binding Flows
You may also notice that after enabling a property for binding that an image of a
partial logic flow will appear at the bottom of the property grid:

This is a simple shortcut that allows you to generate a simple flow to bind values to
the property without having to switch over to the logic flow designer. In addition,
since these flows simply bind system states to panel properties, the flows generated
by this method do not count against your license count. It is an easy way to quickly
add simple functionality. But it will be easier to understand with an example.

Let’s say we want the button we have dragged onto the panel to trigger a route
change. Select the button and enable the binding button on the mousedown event.

We are defining what we want to have happen when the button is pressed. Then
double click on the endpoint in the flow image.

This will open the normal property selection dialog used in logic flows:

Expand the Routers section, expand a router, and expand the destination you want
to change when the button is pushed, and then click on the CurrentSourcePath
Property. Then click select.

The system will automatically move to the translation dialog.

Click on the *=* item in the list and then select the True item in the left hand drop
down and the source you want to route to the selected destination in the right hand
drop down.

We have just defined that if the mousedown event is true, the sa_server_06 source
will get routed to the TestTest destination. However, when you click Done you will
get a pop up message.

This message will only appear if you are generating flows on the mousedown or
indicator properties of a button. In this case it knows that since we are defining
what we want the button to do, we probably also want some indication on the
button that the requested action has been done. If we click OK, it will automatically
turn the binding button on for the indicator property and open the flow definition
for the indicator. In this case it is smart enough to fill things in for us.

It is important to notice that the flow for the indicator property looks different than
the one for the event.

The system is smart enough to know which direction these flows should go. For
example, with an event the start point is not displayed in the flow because the event
we have selected is the start point and the end point is what we are going to change.
On the other hand, standard properties like the indicator are changed based on
things that are changing in the system. So, you select what property in the system is
causing the indicator to change. In that case the partial flow shows the start point
and the translation and the endpoint is the property of the panel component we
have selected. The rule of thumb is that events will display partial flows with an
endpoint and other properties will display a flow with a start point. The missing
part of the flow is the event or the property itself.

When we click OK to the message above you will notice the system will skip picking
the start point. This is a special case for buttons where you are configuring the
mouse down and indicator properties. Since we just defined what we want to
change when mouse down is pressed, the pop up message is asking whether we
want the successful change of that route to be reflected in the indicator. So, if we
click OK, the system automatically turns on the binding for indicator and fills in the
start point with the destination selected, and then displays the translation settings.

You will also notice that the system is assuming you will want the indicator to be on
if the selected source is routed to the destination and off if it is not.

Click Done.

You will notice that the flows are no longer gray and have turned blue to indicate
they have been defined. Saving the panel will cause the flows to be created and start
working in logic flows. Flows created in this manner will be generated in a special
folder in logic flows called _panels. The flows in this folder may be monitored for
troubleshooting purposes but they cannot be changed from within logic flows. They
are only edited through the panel designer.

Note: To see these flows working you need to go back to user panels and open the panel for usage

by clicking on the panel link rather than the edit link. It is sometimes useful to have this open in a
separate browser tab while you are working. Then after you save changes in the designer you can
switch over to the tab with the running panel, refresh the page and see your changes in action.

To extend this example, turn on the binding for caption as well.

Now double click on the start point and select the same CurrentSourcePath property
of the same destination. Now in the translation select what you want the button to
say when the source is routed and what you want it to say when it is not.

Click Done and Save to save your changes. Executing the panel should now display
Routed or Not in the buttons caption depending on whether the selected source is
routed to the destination.

A more useful change you can make with the caption property is to select the
CurrentSourceName property of the destination in the logic flow property selector
and use a *=* translation. You can change this by double clicking the start point
while the caption property is selected.

Now pick the currentSourceName Property instead of the CurrentSourcePath
property and click select.

Change the translation to be *=*. Then click Done. Now the button’s caption will be
tied to the name of whatever source is currently routed to the destination.

After saving the panel and opening it up for use you should find that pressing the
button will make the route change, the indicator will light or unlight according to
the back-color properties depending on whether the route is made, and the caption
should display the name of the source that is routed to the destination.

By using these techniques, you can edit functionality into the panel components in
very easy and extremely powerful ways.

Complex panel flows
In many cases you may wish to create more complex flows than described in the
examples above. For example, you may want your indicator state on a button to be
the product of numerous conditions in the system. Those kinds of flows can still
easily be created, but they must be created within the logic flows designer. Simply
enable the binding button for the properties these flows need to manipulate without
generating a flow in designer. Save the panel and then from within the logic flows
property selector, these properties will be available for use.

Changing Pages
The toolbars section above talked about multiple pages within a panel. This section
will use the information learned above to create a panel that switches between
multiple pages.

First create a new panel and Save it as TestMap. Click on the panel and then in the
property grid, expand the style and background sections. Click on the value for the
background-image property. A dialog will appear for selecting and uploading
images.

In this case I am going to upload an image of a map of Ohio. Click Choose File and
select your stored image and then click Upload. The image will then appear in the
selection list.

Click on the image and click Select. The background of the panel will now display
the image of Ohio. Drag a button on and position it next to Cleveland and then
update the caption and color properties of the button to read Ok and select cyan for
the backcoloroff. Under the border section, set the box shadow to none. Then set
the opacity property to .8. Your panel should now look something like:

Next enable the binding for the indicator state of the button. Then click on the start
point and select a silence alarm state as the start point. For the translation select
audio presence as indicator off and silence for on.

After clicking Done, click cancel when it asks about the mouse down action. In this
case the mouse down is going to change pages and has nothing to do with the
property we are picking for the indicator so we will set it separately.

Next turn the binding for the caption property on and double click the start point of
that flow. Select the same Alarm State property, but for the translation make silence
convert to Err and Audio Present to OK.

Click Done and the save the panel.

At this point if we were to execute this panel, the button next to Cleveland should
show cyan and OK if the silence alarm has audio presence and Err and Red if it is
silent.

Next from the page drop down select [NewPage]. Save the New page with the name
Cleveland. Drag a new button onto the new page and set its caption to return. Turn
on the binding for mouse down on this button and then click the end point. Expand
the UserPanels section of the logic flow property selector and the
TestMap.Cleveland section and select the ChangePage property.

Note: If you do not find TestMap.Cleveland in the logic flow property selector it means you have
not saved the new page yet.

In the translation set True=TestMap.index. Click Done and click cancel for updating
the indicator property. Then save the Cleveland page again. We have just defined
that when we click the return button on the Cleveland page it will set the
ChangePage property of the Cleveland page to TestMap.index effectively returning
to the index page.

Now use the page drop down to select the index page again. Click the OK button.
Turn the binding for the mouse down event on, click the endpoint, select the
TestMap.index ChangePage property and then in the translation set
true=TestMap.Cleveland. Click Cancel for the binding indicator question and save
the panel.

At this point, the button on the main map should switch caption and indicator color
based on the silence alarm state and clicking this button should take you to a new
panel called Cleveland. Clicking the return button should take you back to the main
map index page.

It is important to note that you are always selecting the changepage property of the
current page you are on and setting its value through the translation dialog to the
page you want to move to. Another interesting point is that the change page
property is also available to normal logic flows. So, for example rather than binding

this to the mouse down event, we could create a flow in logic flows that
automatically switches the panel page to the Cleveland panel whenever a silence
alarm occurs and back again when audio presence is restored. Additionally, the
change page property is not limited to pages within the same panel. You could
switch to a completely different panel.

Obviously in a real use case we would fill the Cleveland page with more information
than just a return button. For example, we might create a system flow chart page
with meters and buttons and silence alarm states of various parts of the chain to
more easily determine where the failure occurred.

Hardware mapping buttons
Buttons created in a user panel (html or console) may also be hardware mapped to
physical LCD buttons in the console or rack mount button panels. Hardware
mapping makes the physical button mirror the behavior of the software button. To
define this, click on a button created in a user panel.

Then click on the HwMap field. A dialog will appear from which you can select
known buttons in the system.

The mapped to field will display if the button has already been hardware mapped as
each hardware button can only be mapped to a single software button. Physical
buttons do not have to be hardware mapped. They can also just be used directly
with logic flows. If the button you want is not shown, make sure the Lcd panel or
console is in the devices list. If not, it needs to be discovered. See the
PathfinderCore PRO manual for more details on discovering devices. Note that Lcd

panels must be manually discovered in devices using the add and Lwcp discovery. If
the device exists in the system and it is a console but it is not showing the lcd
buttons, try pressing a few of the lcd buttons and then refreshing the web page.

Select the button you want to hardware map and click Select.

Once the panel is saved hardware mapping in html panels takes place natively in the
application and does not require hardware map logic flows like the legacy panels
did.

IO selection for meters and faders
Under the custom components there are two different kinds of meters and two
different kinds of faders. The components section below will provide details on
these components. But for all of these components the method for selecting the IO
which the component will display is the IO property. For example, drag a gradient
meter onto the palette and resize it to an appropriate size.

Clicking in the IO property field will open an IO selection dialog box.

The link at the top of the page will display whether sources or destinations are
currently being displayed and clicking the link will change between the two. You
can use the search box to narrow down the list within either sources or destinations.
Click an IO whose metering you want to be tied to the meter and click select. The IO
field will fill with the path of the selected IO. Since we are in the designer, no
metering will be displayed. It will only display when the panel is executed.

It is also important to note that turning the binding button on for the IO parameter
will make it available to logic flows such that you can dynamically change the IO
assigned to the meter or fader.

ConsoleFader
Some special attention should be given to the ConsoleFader component. This
component will dynamically adjust what it displays depending on the type of IO it is
associated with. Those changes will only be shown when the panel is executed.
That is when the capabilities of the assigned IO are analyzed. For example, after
dragging a console fader onto the panel and assigning IOs, when the panel is
executed you may see controls that look like:

In this case the first fader is tied to the channel input of an element console. The
second fader is tied to a vmix channel input and so the component changes to show
the time up and down parameters. And the third shows an XNode source.

Components
Each component has a whole variety of css properties and component events that
are available. As mentioned previously in this document many of these can be
understood by googling web page css descriptions. This section will describe each
component as well as custom properties of that component that are beyond the
standard css style properties. While we have included images of the components
below it is important to note that the css properties can be used to make the
components look much different than the default we are showing below. Feel free
to adjust border, color, and shadowing properties to achieve the design desired.

Important Note: Each component has an ID property. This allows you to define a name for the
component. This is useful in differentiating components in logic flows and debugging so it is a good
habit to name components as you create them. Ids must be unique within the page.

Important Note: Since this is still beta some properties may appear or disappear as we continue to
work on the system. In some situations, complex components have inherited css style properties
that are not applicable and so should be hidden. We will continue to fine tune these parameters as
the beta testing process progresses.

Html – Button

The button component is a button that can be designed with different colors,
borders, background pictures, etc and can then be used to control and indicate
changes in the system. This component has been covered in detail in the examples
above. It is important to note that wherever this button can be used, a console
button could also be used. The difference is that the console button has a slightly
more elegant look.

Custom properties include:

• caption: updates the inner html text of the button
• hwmap: used to select a hardware Lcd button. This hardware Lcd button will

then mirror the behavior of the software button.
• indicator: used to set the button indication to On, Off, or Flash. The colors

used for On, Off, and the two flash colors are the backcoloroff and on
properties.

• backccoloron: color used when the indicator state is on.
• backccoloroff: color used when the indicator state is off.

Html - Label

Labels can be used to generate textual label information in the system. The caption
of the label may be dynamically updated by flows by binding the textContent
property.

Custom properties include:

• textContent: The textual information displayed by the label.

Html - Web page

The web page component allows you to embed a web page from another site into
the panel. This component is an html iframe. It is important to note especially
during testing that some sites (such as google) prevent their content from being
displayed in an iframe. This component can be used to display video streams and
other web page content. Use the src property to enter the url for the page to be
displayed.

If you intend to use this as a background component with other components on top,
you may need to manually adjust the z-index property of this component or the
overlayed components to get them to display properly.

Html – Image

This allows you to embed an image in a page. However, most elements also support
the background-image property. For example, you can put an image on the panel
itself without using an image component and you can put background images on
buttons and labels as well. This component can also be used to create background
borders around a set of components. It is recommended to use the background-
image property rather than the src property to assign an image to this component.

Custom – Led Meter

This component can be tied to audio ios that support metering in the system. Use
the IO property to display a list of sources or destinations which can be assigned to
the meter.

Custom properties include:

• IO: Used to select the audio io this meter will display.
• orientation: Used to select whether the meter will display horizontally or

vertically.
• metercale: Used to select the scale of the meter. Options include standard,

linear, and british.
• metrics: Used to define whether the numerical values for the meter are

displayed next to the meter or not. Options include none, lefttop, middle,
rightbottom.

• autosizefont: Used to define whether the metrics font will scale automatically
as the size of the meter is adjusted.

• Led\color: properties used to adjust the on and off colors used for each of
three sections of the meter.

• Led\border: used to adjust the border settings of the individual led blocks.

Custom – Gradient Meter

This component can be tied to audio ios that support metering in the system. Use
the IO property to display a list of sources or destinations which can be assigned to
the meter.

Custom properties include:

• IO: Used to select the audio io this meter will display.
• orientation: Used to select whether the meter will display horizontally or

vertically.
• metercale: Used to select the scale of the meter. Options include standard,

linear, and british.
• metrics: Used to define whether the numerical values for the meter are

displayed next to the meter or not. Options include none, lefttop, middle,
rightbottom.

• style\optimum percent: defines the optimum meter percentage.
• autosizefont: Used to define whether the metrics font will scale automatically

as the size of the meter is adjusted.
• Led\color: properties used to adjust the on and off colors used for each of

three sections of the meter.

Custom – Analog Clock

This component displays the current time using an analog clock style.

Custom – Analog Coutdown

This component allows you to define a trigger a countdown. The clock will display
the countdown value.

Custom properties include:

• countdownlength: time in seconds for the countdown.
• countdownstart: generally exposed via bindings for a logic flow to trigger the

start of a countdown. Options are true or false.

Custom – Digital Clock

This component displays the current time using a digital clock style.

Custom – Digital Coutdown

This component allows you to define and trigger a countdown. The clock will
display the countdown value.

Custom properties include:

• countdownlength: time in seconds for the countdown.
• countdownstart: generally exposed via bindings for a logic flow to trigger the

start of a countdown. Options are true or false.

Custom – Fader

This component can be tied to audio ios whose gain may be manipulated. Use the IO
property to select the controllable source or destination.

Custom properties include:

• IO: used to elect the IO whose gain you wish to control.
• metrics: how the numbering for the fader is displayed. Options include none

and lefttop.
• slider-height: percentage of the overall component height used for the slider

height.
• slidebarwidth: width in pixels of the bar on which the slider rides.
• metricoffset: percent of width used for the metrics.
• metriclinecolor: color for the lines drawn for each metric line.
• slidebarcolor: color of the bar on which the fader rides.
• slidebarradius: radius in pixels
• slidebardisplay: whether the slider bar is displayed.

• faderimage: rather than using the default designed slider, an image may be
used.

• slider-margin-left: margin offset for the slider.
• slider-border-style: border style for the slider.
• slider-border-width: border width for the slider.
• slider-border-radius: border radius for the slider.
• slider-border-color: border color for the slider.
• optimum: gain level which is designed to be optimum or unity.
• type: whether this is an audio slider or a slider for controlling other numeric

values. Options are audio and linear. Note linear option and the ability to
control other numeric values is for future use.

• autosizefont: whether the metric font automatically scales as the size of the
fader is adjusted.

Important Note: Currently Qor faders are not supported by this component in the first beta release.
Additionally it currently uses the fach object for fusion faders. Support for Qor and Lwch will be
added in the near future.

Custom – Console Button

This button works the same as the html button but has a more interesting look.

Custom properties include:

• saconsolebutton-caption: updates the text displayed on the button
• hwmap: used to select a hardware Lcd button. This hardware Lcd button will

then mirror the behavior of the software button.
• indicator: used to set the button indication to On, Off, or Flash. The colors

used for On, Off, and the two flash colors are the backcoloroff and on
properties.

• backccoloron: color used when the indicator state is on.
• backccoloroff: color used when the indicator state is off.
• saconsolebutton-image: used instead of the standard css style background

image to update an image inside the button. Because this component is built
from several embedded html objects, this makes sure the correct inner
component displays the image.

Custom – Console Fader

This fader is a smart fader that displays a variety of things depending on the type of
io assigned to it. In the example above, this has been assigned to a Fusion console
input. When executed the component understands the type of IO to which it has
been assigned and updates the controls accordingly. In this case it shows the name
of the source profile, a meter obtained from the input stage of the fader, the program
buss assignments, a fader which maps to the fusion fader, A and B user buttons, talk
and preview buttons, and On and Off. The Io can be defined using the IO property.

Custom properties include:

• IO: used to elect the IO whose gain you wish to control.

Important Note: Currently Qor faders are not supported by this component in the first beta release.

Additionally it currently uses the fach object for fusion faders. Support for Qor and Lwch will be
added in the near future.

Launching the panel from a Desktop icon (windows)
If you are using chrome, there are some command line options that will allow you to
launch a PathfinderCore PRO panel as if it was an application. Copy and paste the
following into a notepad or text editor:

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" --
app="data:text/html,<html><body><script>window.location='http://Admin:Admin
@172.16.1.220/userpanelframemin.php?panel=ttt&page=index';</script></body>
</html>"

When copied, this should be one line in the editor. The quotes at the beginning and
end are part of the text so do not remove them. After the word “location” there is an
http link. Change the Username:Password to be one that reflects your system. Also
change the ip address (172.16.1.220) to match the ip address of your Pathfinder
Core PRO. Finally, after panel= change the name of the panel you want to launch
from ttt to the name of your panel. If you want to target a page other than the
default index page, change that as well. Once you have the edits made, select the
entire text again and copy it to your clipboard.

Now, right click on your desktop and select new shortcut. Paste the text into the
location of the item field. Click next and input a name into the shortcut and click
Finish.

Double clicking on the shortcut should now launch the panel as its own application.

If you always want the panel to launch in the same place on the screen you can add
another option: window.moveTo(580,240). For example:

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe” --
app="data:text/html,<html><body><script> window.moveTo(580,240);
window.location='http://Admin:Admin@172.16.1.220/userpanelframemin.php?panel=ttt&page=index';<
/script></body></html>"

In the future we will investigate a way to generate the shortcut (or at least the
shortcut text) automatically.

Version 1.3.13.21 Changes

Disk Space Object

This version adds a disk space object in the API and exposes some of those
properties in Logic Flows:

get System#0.DiskInfo#0

indi System#0.DiskInfo#0 AvailableSpace="262.67", CurrentBankSize="949.51",
PercentUsed="72.34", AlertPercents=95, SpaceAlertState=-1, FriendlyName=DiskInfo

The AlertPercents property allows you to define a comma delineated list of disk
space percentages. If any of those percentages is crossed, the SpaceAlertState will
be updated with that percentage. This can be used in Logic flows to generate alerts
if the disk is getting full. By default the AlertPercents is set to 95%. It can be
changed using the Advanced Options in the system configuration page. This api
object can also be used to obtain the current disk utilization information.

Virtual Routers

IO column

This version adds an IO column to the routes page of Virtual Routers to display the
virtual router IO number.

Livewire Channel Number in import lists
When importing Livewire Audio router sources into a virtual router, the livewire
channel number will now also be present for filtering, viewing, and sorting.

Import Target Id
This version adds the ability to enter the id in the virtual router where you want the
imported IOs to start when importing IOs. This will fail if there are not enough open
numbers at the target id to support the number of selected IOs. Leaving the value at
the default -1 will import to the end of the virtual router.

Move Up/Down and Push Up/Down

This version adds the ability to move IOs in the virtual router around when
designing the router. This effectively alters the number of the IO in the virtual
router. It is recommended to sort by Port when using this feature as it manipulates
up and down based on the port number and not the sort order. This is a design tool
to specify a specific numbering for the virtual Ios and is most useful when those IOs
will be exposed to emulated routing protocols that expect a number to be assigned
to each io.

Move Up – moves the IO up in the router effectively decreasing its IO number and
swapping with its lower next door neighbor if necessary.

Move Down – moves the IO down in the router effectively increasing its IO number
and swapping with its higher next door neighbor if necessary.

Push Up - moves the IO up in the router effectively decreasing its IO number and
pushing any lower numbered IOs it runs into up as well decreasing their numbers
until it reaches a hole in the numbering or 0.

Push Down - moves the IO down in the router effectively increasing its IO number
and pushing any higher numbered IOs it runs into down as well increasing their
numbers until it reaches a hole in the numbering or the highest value in the router.

Device Manual Reconnect

This version adds a reconnect icon to the devices page.

Clicking on the circular icon for any device will force PathfinderCore PRO to recycle
the connection to that device.

Version 1.3.13.22 Changes

Virtual Router Editing Move Up/Down Enable
This version adds a checkbox to enable/disable the move up/down and push
up/down buttons added in 1.3.13.21. This is a safety measure to prevent
accidentally reordering a virtual router.

Version 1.3.13.22 Changes

Send hex escape characters
This version adds escape characters that can be used in generic protocol translator
ToSend properties as well as in Lwrp and Lwcp toSend properties. Escape values
are now:

• \cr – carriage return
• \lf – line feed
• \t – tab
• \%XX – hex asci character where XX is a two digit hex number

Double slash escapes the escape. So for example \%41 sends A but \\%41 sends
\%41 and %41 sends %41.

Disk Space System Status
This version adds disk space to the system status page.

Version 1.3.13.28 Changes

Html Panel Clustering
This version is the first one that supports the clustering of html user panels first
introduced in 1.3.13.20. If you have html panels created before this version, you
may have to execute a manual sync (review manual and/or contact support) after
upgrading both nodes in the cluster in order to initially sync the previously created
panels. After that, newly created and edited panels should sync across the cluster
properly. Please report any issues you experience with this new functionality.

Route Locking
This version adds route locking. Each route in a router can be Unlocked, Locked, or
SystemLocked.

Each lock state is represented by an icon in the Routes table of the router:

Locked:

Unlocked:

System Locked:

System locked (with the exception of virtual routers described below) indicates that
the device itself does not allow route changes to be made on that IO. This is typically
seen with console faders where source changes must be accomplished via a source
profile load rather than a route change.

It is important to note that other than system locks, locking and unlocking is a
Pathfinder state and is not actually changing anything in the equipment as Axia
equipment does not have lock parameters. Therefore a locked route in Pathfinder
Core PRO could still be changed by the device’s web page. Locking or unlocking a

route is as simple as clicking on the destinations icon in the route list. Routes that
are locked must be unlocked before they can be changed. In addition it is possible to
define whether a particular user has the rights to change route locks. When defining
a user, a field now exists to configure this:

Note: The Route locks do not apply option is for future use and not fully functional at this point in

time.

Enabling the Can Lock Routes checkbox can be used to define if the user has the
rights to lock and unlock routes. This allows an Administrator to lock routes and
make them unchangeable by normal users.

Some special notes need to be made in relation to virtual routers. A virtual
destination is comprised on one or several base destinations from other routers. If
you lock a virtual destination, it will not lock the underlying base destination. This
is by design and allows an Administrator to create a general user router with locked
destinations and an engineering router where those same destinations are
unlocked. However, if the base point becomes locked, then the virtual destination
will display as system locked and the lock can only be removed by unlocking the
lock on the base point. In the case where a virtual destination has multiple base
points, the locking of any of the base points results in the entire virtual destination
becoming system locked.

Note: The fact that locking a virtual destination does not lock its underlying base point is different
from how previous versions of Pathfinder worked but provides better functionality as described
above.

Revised Network Icons
The network connectivity icons have been updated for a better look in this version.

Connected:

Disconnected:

Panel Clone Fix
Previous versions of the html panels introduced in 1.3.13.20 exhibited a bug with
cloning a panel. The cloned panel would not allow new image files to be uploaded.
This was due to an incorrect security setting on the cloned folders. This has been
fixed in the clone process, but if you have previously cloned folders that exhibit this
problem, they may be fixed with an API command. Open a telnet session to port
9600, login, and send the command. Example:

Login Admin Admin
SET UserPanels#0 FixPanelSecurity=True

This command will reset the permissions on all panel folders and subfolders. This
command should only be necessary if you have cloned html panels in versions prior
to this version and can't upload pictures to the cloned panels.

Version 1.3.13.30 Changes

Logic Flow Combiners
This version adds a feature to combiners called Raise Output. Double clicking on a
combiner will present an additional field for configuring this option:

By default, new combiners will be set for raise output on set. This matches the way
combiners have worked since version 1.3.11.10. The other option is Raise Output
On Change. To understand the difference, let’s look at a flow:

In this flow if both pin 1 and pin 2 are low, then pin 4 will be set low. And if either
pin 1 or pin 2 is high, pin 4 will be set high. If the combiner is set to Raise Output On
Set, then any time either pin 1 or pin 2 is changed a message will be sent to set pin 4
to the corresponding value. So, if we assume pin 4 is currently high or low and we
set pin 1 to low when pin 2 is still high, a message will get sent to pin 4 to go high.

However, if the setting is set to Raise Output on Change, no message would be sent
to pin 4. When both pin 1 and 2 were high the resulting output of the And combiner
is False. When pin 1 goes low, the resulting output of the And combiner is still False.
It’s output value has not changed and so no message is sent.

The difference is a bit subtle, but essentially with Raise Output on Set, a change
message will be sent to the endpoint any time the input of the combiner changes
even if it evaluates to the same output the combiner was at before. Whereas with
Raise Output on Change, a change message will only be sent when the combiner’s
output changes.

Let’s look at another example that might be a better example of when Raise Output
On Change could be useful:

In this example Gpio pion state 4 appears at each pair of And combiners on the left
hand side of the flow. If all the combiners in this flow are set to Raise Output on Set,
then the resulting endpoint may get set 7 times when gpio pin 4 changes. This is
because, a change to the pin would get fully passed through the flow for each
instance where it appears as a start point. However, if the left And combiners are all
set to Raise on Change then the output will only get set for combiners where the pin
state change actually causes a different state on the output of the combiner. This
can greatly reduce load and improve performance in large and complex systems.

It is also important to note that this property is a new variable that must be stored
into the backing storage. For backwards compatibility, Raise on Set will store the
same way it historically has making that backwards compatible with older software
versions. However, any flows that are changed to use Raise On Change will not be
loadable by older software versions that do not support this property.

Finally, it is possible to change all of the combiners to a particular setting using the
port 9600 API. Each Logic Flow view has a write only property called
ChangeAllCombinerRaiseOutput. Using this property all combiners in a view and
that view’s sub views can be set to the same value. This is useful for changing many
combiners at once but should be used with caution. It is recommended that a
backup be taken before using this api command. Example:

set LogicFlows#0.LogicFlowFolder#yyy ChangeAllCombinerRaiseOutputSettings=
RaiseOutputOnSet

set LogicFlows#0.LogicFlowFolder#yyy ChangeAllCombinerRaiseOutputSettings=
RaiseOutputOnChange

Version 1.3.13.31 Changes

New Operating System

This version is functionally equivalent to 1.3.13.30 but with a new operating system
and target framework. Starting with 1.3.13.21 we have had parallel development
branches with a new operating system and target framework. This alternate version
(referred to as the buildroot version) has been going through internal testing as well
as testing with select customers for several months. The difference in this version is
that the operating system has been completely reworked to be a purpose-built
version of linux rather than being based on a stripped-down version of Debian. This
gives us much more control over what exists in the operating system. Additionally,
any of the code based on dot net technologies has been reworked and recompiled to
target the dotnetcore framework as opposed to the mono framework. We have done
this to obtain the following advantages:

• Better control over the operating system and an optimized build process.
• Better control over the codebase.
• Much smaller footprint on the disk (~300MB as opposed to ~600MB). This

leaves more space for image files with panels, etc.
• Smaller update packages (~100MB as opposed to ~200MB)
• Significant performance improvements and lower cpu utilization under

dotnetcore.
• Improvements in memory consumption and management.
• Subsequent releases will use this new operating system and codebase.

Users of PathfinderCore PRO on the fanless engine platform (as opposed to vm beta
testers) will see an initial increase after startup in memory consumption. This is
because this build moves from a 32bit OS to a 64bit OS on the Fanless Engine
platform. However, we see much better memory management as the system runs.

Additionally, the update package will make certain changes to the boot sector.
Upgrading and downgrading of software will continue to work properly in all but
one situation. If you upgrade a bank to .31 or later and then switch back to a pre .31
version and try to overwrite the .31 bank with a pre .31 software image, the write
will work but booting into that downgraded bank will hang. Power cycling will then
boot bank into the previous bank. In this case you can run a special update package
that only fixes the boot sector. Simply apply this update package as if you were
doing a normal software update. It will not actually change the software in either
bank but instead will just run an update script to update the boot loader settings.

Note this only happens when running on a pre .31 bank and trying to downgrade a
.31or later bank to a pre .31 software image. Most customers will never experience
this. We only expect to see this with systems integrators and support engineers who
may need to be switching their software versions regularly to match that of their
customers.

Boot Sector Fix Fanless Engine -
http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0.pfc_upd

or

Boot Sector Fix VM –

http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0_vm-
bank.pfc_upd

http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0.pfc_upd
http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0.pfc_upd
http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0_vm-bank.pfc_upd
http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0_vm-bank.pfc_upd
http://pathfinderpc.com/pfcorepro_downloads/pfc_os-bootrepair_0_vm-bank.pfc_upd

Version 1.3.13.32 Changes

Element/Fusion Fader IFB

Each Element and/or Fusion fader has a command for manipulating the Fader’s IFB.
This requires the fader to be configured in certain ways so review Element/Fusion
documentation and/or talk to support to use this feature. There are several
properties in PathfinderCore PRO related to this and some nuances around using
them properly which are described below. The possible commands that get sent
between Pathfinder and the Element/Fusion look like:

=> EVENT FaCH#1 ptt=[DOWN,9505,5000]
<= EVENT FaCH#1 ifb_lwch=9505,ptt=DOWN

=> EVENT FaCH#1 ptt=[UP]
<= EVENT FaCH#1 ifb_lwch=0,ptt=UP

Using the LwCH (as opposed to FaCH) to select the fader with a specific livewire
channel assigned is also acceptable. The parameters of the command are UP or
DOWN for engaging or disengaging the IFB and the livewire channel number to use
as well as a timeout value in milliseconds.

These are represented in PathfinderCore PRO as a set of properties in the FaCH
and/or LwCH objects in the logic flows property selection:

• ifb_send_lwch – livewire channel number to send when ptt is down
• ifb_timeout – timeout to send when ptt is set Down
• ifb_lwch – ReadOnly response of the ifb_lwch property when ptt is engaged
• ptt – DOWN/UP

It is important to note some anomalies regarding how these properties work
relative to other properties in the system. First, the Element/Fusion only responds
to the ptt command on the client that made the request. Other servers connected to
the Element/Fusion will not know that an IFB is engaged. Second, there is no way to
set in the equipment the ifb channel and timeout to use between ptt actions that
gets stored between restarts either in Element/Fusion or PathfinderCore PRO.
Therefore, it is important to set all three properties whenever you engage the IFB
with a logic flow. This should be accomplished using an Object Translator instead of
a property translator. For example, create a flow where the start point is a gpo and
the endpoint is an FaCH object. Select the whole FaCH object not an individual
property in the object.

Next set the translation list to look like:

In this example when the GPO goes low, three properties will be set on this
particular Fusion fader, ifb_timeout, ifb_send_lwch, and ptt. The order is important.
Always set the ptt after the other two properties in the list. Finally, when the gpo
goes high, set ptt up.

This allows the flow to set all necessary properties in one block and do them in an
explicit manner that does not rely on storing states.

